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Abstract

A new family of simple generalized strains and conjugate stresses based on the material metric (right Cauchy—Green)
tensor is proposed. It includes an interesting quasilinear pair. It is a close approximation of the Seth—Hill family, with
the advantage of being easier to calculate. It extends the realm of application of the classical theories of linear elasticity
and perfect plasticity from small to large transformations for isotropic and anisotropic materials without any
modification.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Motivation

In nonlinear mechanics, the form assumed by the stress—strain law of a material depends on the stress—
strain pair selected for formulating it. A major trend is to use the simplest strain—stress pair namely the
Green—St.Venant quadratic strain and conjugate second Piola—Kirchhoff stress and to defer all the com-
plexity of the material response to the stress—strain law, which is a sound approach. A less used but appeal-
ing alternative consists in resorting to a more elaborate strain—stress pair such as the Cauchy-Biot linear
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strain and conjugate Biot-Ziegler stress, which significantly simplifies the stress—strain law eventually
down to its small transformation expression. Of course, simplifying the modelling of materials by compli-
cating the description of strain and stress may appear vacuous to many mechanicians. However, the pros-
pect of extending the realm of an-isotropic linear elasticity or perfect plasticity from small to large
transformations without any modification from their parts represents a sufficient incentive to the other
rheologists.

1.2. Precedents

Several pairs of conjugate strain—stress measures have long been identified in nonlinear mechanics, for
which extended bibliographies can be found in (Curnier and Rakotomanana, 1991; Guan-Suo et al.,
1999). Among the material pairs, the Green quadratic strain with the Kirchhoff stress for conjugate and
the Karni quadhyperbolic strain with the Rivlin stress for conjugate play a fundamental role (Truesdell,
1952; Green and Rivlin, 1964; Karni and Reiner, 1964; Hill, 1968). They are both formulated in terms
of the metric but they are called according to their degree in the stretch. The quadratic pair uses the original
form for reference, whereas the quadhyperbolic pair uses the actual form for the same purpose. These two
“inverse” pairs play a reference role not only because they are simple but also because they can be viewed as
an upper and lower bound for other candidate pairs which must hence lie in between.

The best known family of generalized strains with conjugate stresses, along this interpolating idea, is the
Seth—Hill stretch family (Doyle and Ericksen, 1956; Seth, 1964; Hill, 1968). The main shortcoming of this
family is that except for the quadratic and quadhyperbolic cases, the stretch strains are difficult to compute
and their conjugate stresses are even harder to calculate.

1.3. Proposition

In this article, a new family of simple material strains called metric strains is proposed in the form of a
convex combination of the quadratic and quadhyperbolic strains, together with their conjugate material
stresses. The metric family is parametrized by a real number #n and therefore contains infinitely many mem-
bers. For integer values of #, it includes the Green—Kirchhoff and Karni—Rivlin pairs already introduced
above for n =42, plus three new intermediate members called the quasilinear (n = 1), quasilogarithmic
(n=0) and quasihyperbolic (n = —1) pairs because they are simple approximations of the corresponding
linear, logarithmic and hyperbolic pairs of the stretch family. It will be shown that the metric family is a
close approximation of the stretch family, while being easier to calculate. The metric stress—strain family
opens the way for formulating gradual families of constitutive laws at large transformations. For instance,
postulating a linear elastic metric law produces at once a family of nonlinear elastic nominal laws. A thor-
ough analysis of the rank-one convexity properties of the isotropic elastic energy density from which the
metric law derives, shows that, within the range 0 < n < 1, the metric law is rank-one monotone (i.e. its
energy density is rank-one convex) over a much wider region around the origin than the classical
StVenant—Kirchhoff law (n = 2) and the opposite law (n = —2), which are not even monotone in compres-
sion and in tension, respectively. This is a major improvement from a fundamental standpoint since rank-
one monotony is a necessary condition for the existence of a solution to the corresponding boundary value
problem. In fact, similar trends have been already observed by Hill (1978), Bruhns et al. (2001) using the
Seth—Hill family, where n» = 0 stands for the logarithmic strain.

1.4. Outline

The concepts of metric strain and conjugate stress are presented in Sections 2 and 3, respectively.
“Metric” elasticity is then formulated in Section 4 and its rank-one convexity properties are analyzed
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for the isotropic case in Section 5. The homogeneous stress—strain states of tension—dilatation, traction—
elongation and shear—glide are then illustrated in Section 6.

1.5. Notation

Hereafter, scalars are denoted by italic letters (e.g. t), vectors by bold face minuscules (x), second-order
tensors by bold face majuscules (F) and fourth-order tensors by outline majuscules ().

With these notations, let F denote the Euler nominal strain defined as the gradient F = V,y of the motion
y : (x,1) — y(x,7) and P the conjugate Piola nominal stress defined through the nominal version of Cauchy’s
theorem p = Pn, where p is the corresponding traction vector and n the original normal. P and F are con-
jugate or dual because their internal power is equal to the external power supplied to the solid:
JoP: Fdy = JogP - ¥d4 (where Q is the solid original form and y the particle velocity). However F and
P are not symmetric and not objective, which complicates the direct formulation of constitutive laws in
their terms.

The right Cauchy (symmetric, positive-definite) material metric C = F'F (hereafter referred to as the met-
ric tensor) and the Kirchhoff (symmetric) material stress S defined through P = FS are more appropriate for
this purpose. S and C/2 are also conjugate since they develop the same power as P and F, ie.
S:C /2=P: F. So-called material strain—stress pairs, formulated in terms of C and S can simplify even
further the task of formulating material laws. The right Cauchy material stretch U = /C, occuring in
the right polar decomposition F = RU, will also serve as a standard of comparison. The reader is referred
to e.g. (Truesdell and Toupin, 1960; Truesdell and Noll, 1965; Eringen, 1975; Chadwick, 1976; Hill, 1978;
Gurtin, 1981; Curnier, 2004) for complete treatments. Finally the following tensor products (cf. e.g. Cur-
nier, 1994; Curnier, 2004) will be used:

o vector dyadic [a®blx = (x-b)a, Vx [e; ® e;]x = Xse;

o tensor dyadic [A®BX=(X:B)A, VX I IX=(trX)I
e tensor product [A ® B]X = AXB", VX IeIX=X

e transp. product [A® B]X = AX"BT, vX Ierx=x"

o symm. product [A® B]X = AXB', vX =X" I®0X=X

hence A ® B =1(A ® B+ A ® B). The summation convention on repeated indexes is also used.

2. Metric strain

The concept of generalized strain was introduced by Doyle and Ericksen (1956) and by Seth (1964), gen-
eralized by Hill (1968), Hill (1978) and studied by Ogden (1974), Ogden (1984) and Curnier and Rakotom-
anana (1984), Curnier and Rakotomanana (1991), among many others.

2.1. Metric provision

A claimed objective of this study is to propose simple, easy-to-calculate, strain measures. Comparing the
available “‘easy” Green and Karni strains, to the “harder” intermediate members of the stretch family, it is
clear that a dependence on the metric C must be preferred to a dependence on the stretch U, in order to
avoid extraction of the square root U = v/C and, later on, the derivation of the stretch rate U. Throughout
this article, the term metric tensor will be used as a shorthand for right Cauchy—Green tensor. In short,
computational facility suggests working with metric integer powers rather than with stretch ones.
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2.2. Generalized strain

A generalized material strain G is defined as a symmetric tensor valued smooth monotone function of the
symmetric positive-definite material metric tensor C, which derives from a convex potential, vanishes in the
original form Q (where C =1) and has a half-unit gradient there

G:C—G(C)=G'(C), GMH=0 (1)
VcG(C) = V{G(C) =0, VcGI)=1/2 (2)

In these relations, VcG denotes the (fourth-order) gradient of G with respect to C with major symmetry
VEG =VcG <= X:VcGY =Y : VeGX, VX, Y (in addition to the two minor ones) and positive-definite-
ness > 0 <= X :VcGX >0, VX = X' # O;1 =I® I denotes the (fourth-order) identity tensor for sym-
metric (second-order) tensors, i.e. IX = X, VX = X" (cf. Curnier, 2004).

Besides computational ease, dependence on C guarantees objectivity. Smoothness and monotony guar-
antee bijectivity between C and G(C) and hereby existence of a smooth inverse G™'. Existence of a strain
potential guarantees strain path indifference. The two consistency conditions imply that the strain vanishes
in the original form and coincides with the “small” Cauchy strain about it. All classical strains are general-
ized strains.

Besides the minimal requirements (1) and (2), a generalized strain G should be a coercive function over its
domain of definition Sym_ (the convex cone of positive definite symmetric tensors), meaning that its norm
should tend to infinity on its boundary 0Sym,, ie., ||G(C)|| — oo as ||C|| — 0 and ||C|| — oo, where

[X]| = 1/tr(X"X). Coerciveness means that a strain should tend to plus infinity when a bar is elongated

to infinity and to minus infinity when it is shortened to zero. It is kept as a desirable attribute rather than
a requirement however, because the Green and Karni strains violate it in compression and in tension,
respectively.

2.3. Isotropic strain

In addition to (1) and (2), a generalized strain G is usually required to be an isotropic function of C for
excluding an artificial geometric anisotropy which would interfere with an eventual genuine material
anisotropy

G(RCR") =RG(C)R" VR=R" (3)

In short, isotropy infers material direction indifference of the strain measure. The theorem of representation
of isotropic functions of a symmetric tensor provides the general form of an isotropic strain as a nonlinear
combination of three consecutive powers of C called “generators”, with coefficients depending on three
independent invariants of C. In view of the expressions of the classical Green and Karni strains, these three
generators are preferably taken to be C, I and C~! and then the invariants to be their primitives for
simplicity

Ii(k=1,0,—1), I'=trC*/2, Ty=trC, I_; =In(detC)=tr(InC)
Vel = CF, Vel =C, Velg=1, Vel =C!
Vil =VcCr, VAN =181, Vily=0, Vil =-C'gC’'

where the gradients of the metric determinant and inverse are recalled to be Vcdet C = detC C™' and
VeC ' = —C'®C!, respectively.

Hence, an isotropic material strain is defined as a smooth monotone isotropic function based on the three
generators C, I and C~', which vanishes in the original form Q and has a half-unit gradient there



A. Curnier, Ph. Zysset | International Journal of Solids and Structures 43 (2006) 3057-3086 3061

G(C) - G,‘(F],Fo,[v,l)ci
=G(I',To,T1)C+ Go(I'y, Lo, T )1+ G_y(I'y, T, T)C”"

G1(3/2,3,0) + Go(3/2,3,0) + G_1(3/2,3,0) =0 (4)
VcG(C) = 2—?;(“7 o, I_)C' @ C + G(I'), Ty, _;)VcC*
:2—?:C®C+2—?;C®I+aaf_llC®C’l
+2—?§’I®C+2—?§)’I®I+a@ﬁll®c”
+ aaGF‘ll C'eC+ aa(;‘o‘ C'ol+ g(r;j C'ec!
+GIBI-GC'®C!'~0
ziﬁjg—?j@/z, 3,0)=0,G,(3/2,3,0) — G_(3/2,3,0) = 1/2 (5)

Here, the G; are 3 scalar functions of the 3I'; and their gradients are calculated by the chain rule
VcG; = (0G,;/oI';)VeIl ') = (aG,-/GFj)Cj (i,j=1,0,—1) (cf. Curnier, 2004) and evaluated at (I'y,Io,I"_).
The major symmetry (2) translates into that of the coefficient Jacobian matrix: 0G,/0I'; = 0G;/0I’;.

Using the spectral decomposition of the metric tensor

C=y.,0c¢c, (a=1,30<y,<o00;¢, € = 0un) (6)

where 7y, are the 3 positive real eigenvalues of C, ¢, the 3 corresponding orthonormal eigenvectors and
¢, ® ¢, the 3 resulting self-dyads, an isotropic strain is equivalently characterized by

G(Vwct?) = ga(ylayb )73)Ca & Cq

7
g (11,1 =0 g
0g,
VCG(Vm cc) = A [ca X, ¥, ® cb] + gaVC[ca ® ca] =0
1 1y=1s
a"/b s Ly _2 ab

where the g, are 3 cyclically symmetric functions of the y, linked to the G; by g.(y,,72,7;) =
G2+ +793)/2,0 + 7+ 5. n(0773)]7. + Gol. . ] + G4[...]1/y, and their gradients calculated via
Veg, = (0g,/9y,)Vey, = (0g,/07, )¢ @ ¢, with dg,/dy, = 0gp/0ya, a,b = 1,3. Consequently, the strain prin-
cipal directions coincide with the metric ones ¢, i.e. G(C) and C are coaxial. The spectral form (7) resembles
the invariant form (4) once the eigenvalues are regarded as invariants and the self-dyads as generators. The
trouble with eigenvalues is that they can be repeated, in which case the orthonormal triad of eigenvectors
becomes rotationally loose and the actual calculation of the gradient delicate (cf. Hill, 1968; Ball, 1984).
This is why the invariant formulas (4) and (5) are computationally preferable to the spectral ones (7)
and (8). All classical strains are isotropic strains.

2.4. Simple strain

At this stage, another simplification is introduced, either in the invariant form (4) and (5) or in the spec-
tral one (7) and (8).
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The strain gradient (5) is composed of a dyadic part (0G,/0I /)Ci ® C and a diagonal part G,VcC*. Since
the dyadic part vanishes in the original form and is absent in all classical strains, it is inferred that a subclass
of simple strains results if it vanishes everywhere. A sufficient condition for that clearly is 0G,/0I’; = 0, i.e.
G{(I')) = G; = constant. In other words, a trinomial Laurent’s series with constant coefficients G; is a simple
strain candidate

GC)=GC+GI+G ,C", G+G+G,=0 (9)
VeG(C)=GI®I-G,C'gC"'~0, G -G ,=1)2 (10)

It is a nonlinear dilatation of C that exhibits no coupling between principal strains.
Simple strains can also be derived from the spectral form (7) by assuming it to be a simple tensor func-

tion, meaning again a nonlinear dilatation of the metric tensor C (Hill, 1968; Ogden, 1974; Xiao et al.,
1998a)

G(“/C,CC> :g(ya)ca @ €4y g(l) =0 (11)
1
VeG(re,e) = 8" 0um) glea @ + e, @ e @ lca @0y + 0, @l - 0 (12)
g(v) —e(v.) .
- lf qa ) ! !
& (e p) = Vo~ Va Ve ? hogy) >0, g(1)=1/2
g () if y, =7,

Simple scaling guarantees principal strain uncoupling. Classical examples of simple functions are polynomi-
als, Laurent’s series, the logarithm,... (Moreau, 1979). All classical strains are simple strains.

2.5. Metric strain

Both invariant and spectral reductions (9) and (11) suggest that a Laurent series truncated to its 3 central
terms with constant coefficients represents a promising strain prototype. Enforcing the consistency condi-
tions G; + Gy + G_; =0 and G; — G_; = 1/2 then yields the proposed concept.

A metric material strain E,, (=G) is defined as a smooth monotone isotropic simple function in the form
of a linear combination of the three consecutive powers C, I and C~!

2 2

E,(C) = ;r” 4 . ! E)=0 (-2<n<2) (13)
2 2en _

VeE,(€) = = MBI+ T 1 B O VR, 1) =172 (14)

A metric strain can also be viewed as a convex combination of the quadratic and quadhyperbolic strains
24+n 2—n

15

4 4 (15)

The metric strains (13) form a one-parameter family called the metric family. It includes an infinity of mem-
bers since # is real. Focussing attention on integer values of n, the quadratic Green and quadhyperbolic

E, =

Index n Metric strain E,(C) Qualifier (U-degree)
2 E;(C)=1(C-1) Quadratic
1 E (C)=13C-21-C") Quasilinear
0 Eo(C)=1(Cc-c™ Quasilogarithmic
-1 E (C)=1(C+21-3C") Quasihyperbolic
-2 E,L(C)=ia-c™h Quadhyperbolic
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Karni strains are recovered for the two extreme values n = +2, the quasilogarithmic strain for the middle
value n = 0 (Pietrzak, 1997; Pietrzak and Curnier, 1999) and two new strains are uncovered for n = +1.
In fact, the metric family is a second-order approximation in terms of ||U|| of the Seth—Hill stretch family

(Doyle and Ericksen, 1956; Seth, 1964; Hill, 1968)

E(U) LU -1, EU)=hU (-2<m<?2)

—m m

While the extremes are the same EIZ(Uz) = E_»(U), the intermediates are close

E,(U?) :é(wz —2I-U?)=~E(U)=U-1
1
E,(U?) = 1 (U~ U )~ Ey(U)=InU
1
E_ (U?) = g (U*+21-3U %) =~E (U)=1-U"

hence their names.
Injecting the spectral decomposition (6) of C into (13) gives its spectral form

En(ym cL’) = eﬂ(ya>ca ® ca

1
VeE, (v, ¢c) = €, (Viam) glea @ e + ¢, @ ¢] @ [e, @ € + ¢, @ ] - 0

24n 2—-n1l
'(y) = . (1) =1/2
en(v) 8 + 8 ,yz >0’ en( ) /

(16)

The metric scale ¢, is a monotone function of y and therefore the metric strain E,, is a monotone function of
C. The graphs of the integer scale functions e, are plotted in terms of the stretch v = /7 in Fig. 1, for com-
parison. They are representative of a simple elongation of a bar. The quasilinear strain E; is outstanding
because its curvature vanishes and its inflexion occurs at the origin. Over their extended domain 0 < v < oo,

Fig. 1. Graphs e = ¢,(v) of metric strains versus stretch.
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the scales ei»: v eir(v) of the quadratic and quadhyperbolic strains reach the limits: e(0) = —1/2
(€5(0) = 0) and e_»(00) = 1/2 (¢/ ,(c0) = 0). These limits indicate that e, and e_, are strictly monotone over
0 <y < o0 (as they must) but no longer at 0 and oo, respectively. Consequently, E_, are not coercive. This
confirms that E, and E_; are upper and lower bounds, respectively, for other strains and that » must be
kept within its preassigned range —2 < n < 2.

2.6. Nominal-metric strain

Using the metric tensor definition C = F'F, the generalized, isotropic, simple and metric strains can be
expressed in terms of the nominal strain F. In particular, the metric strain E, and its non-symmetric gra-
dient VgE,(# VEEn) are equal to

2—n
8 4 8

S O (19)

V¢E, (F) = [FT®I+I®FT]+2%[F’1@(F”F’T)—&-(F FHQF' (20)

2.7. Metric strain rate

For a generalized strain (1), the rate is the composition of the metric rate by the strain gradient

G(C,C) = VcG(C)C (21)
Note that G(O, C) O and G(C I) = C/2 as expected. By construction, this linear relationship is invert-
ible as: C(G,C) = V¢'G(C)G.

The rate of a metrlc strain is easily found in terms of the metric rate C as
o 2 . 2 — . 2- _ . .
£,(C,C) = + " 8 ec = ;”1@1 += e B C = Ve, ()¢ (22)

Of course, E,(O,C) = O and E,(C,I) = C/2. Therefore, the metric strain rates are much simpler to calcu-
late than the rates of the stretch family (16) which remain complicate in spite of the many attempts to sim-
plify them (Hill, 1978; Fitzgerald, 1980; Ball, 1984; Hoger and Carlson, 1984a,b; Carlson and Hoger, 1986;
Guo, 1984; Curnier and Rakotomanana, 1991; Scheidler, 1991; Man and Guo, 1993; Xiao et al., 1998b;
Guan-Suo et al., 1999; Rosati, 2000).

2.8. Nominal-metric strain rate
Using the basic formula
C=FF+FF=[ I+13FF = [ViCF (23)

all the generalized, isotropic, simple and metric strain rates can in turn be expressed in terms of the nominal
strain rate F. In particular, the metric strain rate is equal to

E,(F,F) = [V¢E,(F)|F =

2 .. 7 _ . )
Jg TFF L F'F) + T” (F'FF'FT+F'FTFF)

_ {2 ; " @1+ 1B F +% F'oF'F")+F'FT ®F_11}F (24)
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3. Metric stress

The concept of generalized stress was introduced by Ziegler and MacVean (1967), MacVean (1968), con-
firmed by Hill (1968, 1978) and studied by many others (Guo and Dubey, 1984; Atluri, 1984; Curnier and
Rakotomanana, 1984; Billington, 1985, 1986; Curnier and Rakotomanana, 1991; Xiao, 1995).

3.1. Metric stress provisions

For the same computational facility reason as for a strain and in view of the classical stresses, a general-
ized stress Z is looked for in terms of the Kirchhoff material stress S and the metric C (rather than the
stretch U), i.e. in a form Z(S, C). Moreover, in view of the same classical stresses, a generalized stress is
further restricted to a linear function of the material stress, hence Z(S, C) = Z(C)S.

3.2. Generalized stress

A generalized material stress Z. is defined as a symmetric tensor valued monotone linear function of the
symmetric material stress tensor S with a C-dependent gradient, which coincides with S in the original form
Q i.e. with a unit gradient there

Z:(S,C)—Z(S,C) = Z(C)S, Z(S,I)=S (25)
VsZ(S,C) = Z(C) = Z"(C) = 0, Z(I) =1 (26)

Dependence on S and C guarantees objectivity. Monotone linearity in S guarantees bijectivity between
Z(S,C) and S for all C and hereby the existence of an inverse S(Z,C) = Z~'(C)Z. Major symmetry of Z
guarantees stress path indifference. Finally, reduction of Z to the identity in the original form guarantees
that a generalized stress Z converges to S (and P) for sufficiently small strains.

For a straightforward calculation of the nominal stress P =FS and subsequent formulation of the
boundary value problem, a generalized stress is better formulated in its partial inverse form

S:(Z,C)—S(Z,C) =S(C)Z, S(Z,1)=1Z (27)
V2S(Z,C) =S(C) =ST(C) =0, SI) =1 (28)

3.3. Isotropic stress

In addition to (27) and (28), a generalized stress Z is required to be an isotropic function of both S and C
for avoiding the introduction of an artificial static and geometric anisotropy

S(RZR",RCR") = RS(Z,C)R" VR=R""T (29)

Isotropy guarantees material direction indifference of the stress measure. The theorem of representation of
an isotropic function of two symmetric tensors Z and C then provides the general form of a (Z-nonlinear)
isotropic stress as a combination of § generators with coefficients depending on 10 mixed invariants of Z
and C, including the 3 pure invariants I’y of C (those 8 generators are the 8 partial Z- and C-gradients
of these 10 invariants). Letting the 3 invariants of C aside and deleting the cubic invariant tr° Z/3 of Z
in order to retrieve a Z-linear stress representation, the remaining 6 invariants X; (3 linear and 3 quadratic),
together with their Z-gradients, are
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z; tr(CZ) trZ tr(C'2) lr(CzZ)? lrz? Lr(c™'zy?
Vi3 C I c! CZC Z c'zc!
Vi3, 0 0 ) C®C ID1 clzgc!

More specifically, an isotropic material stress Z is defined as the partial inverse of a smooth monotone
isotropic function of the reference stress S and the metric C, which is linear in the stress S and based on the
three metric powers C, I and C~! and which coincides with the reference stress in the original form @,

S(Z,C) = Sy(I'1, Ty, I _)tr(C'Z)C + S,(I'y, Ty, T)C*ZC* (30)
VzS(Z,C) = S(C) = §,;,C' @ ¢/ + 5,C* & C* (31)
2,2,8,;(3/2,3,0) =0

2:8¢(3/2,3,0) = 51(3/2,3,0) + S0(3/2,3,0) +5_1(3/2,3,0) = 1

In these equations, S;; and Sy (i,j,k = 1,0,—1) are 12 functions of the metric invariants I'; (due to the Z-
linearity assumption). This figure drops down to 9 in view of the symmetry of the stress gradient (31)
and thus of the coefficient matrix: Sj; = S;; (which is necessary and sufficient for stress path indifference).
Sufficient conditions for X;%; 5;(3/2,3,0) = 0 are S;(3/2,3,0) =0 and a fortiori Sy(I';,Io,I'_1) = 0.

Using the spectral decomposition (6) of the metric tensor and the property [¢, ® ¢,] ® [¢, ® ¢)] = ¢, ® ¢,
®c, & ¢y, the stress gradient (31) can be equivalently written

VZS(Z,C) = S;jy'vhea @€, @ ¢ @ ¢y + Syt vbe, @ ¢y @ ¢, @ ¢, (32)
where a,b = 1,3 and i,j =1,0,—1.

3.4. Simple stress

Observing that the stress gradient (31) is made of a dyadic part Si]-tr(C’Z)Ci which vanishes at the origin
and a diagonal part S;,C*ZCF, it is inferred that a subclass of simple stresses will result if its dyadic part
vanishes everywhere, as for simple strains. A sufficient condition for a zero dyadic gradient clearly is S; = 0.

Consequently, a simple stress is introduced as a partial inverse (linear, monotone) diagonal isotropic
stress

S(Z,C) = S,CZC + SyZ + S ,C'ZC! (33)
V.S(Z,C) =S, CRC+SI®1+5 C'aC! (34)
S1(3/2» 37 0) + S0(3/27 37 0) + S—l(3/2a 3a O) =1

It is a nonlinear dilatation of the stress tensor that shows no coupling between principal stresses.
By a similar hypothesis, the stress gradient in spectral form (32) can be reduced to the more simple form

VzS(Z,C) = Si)fyhe. @ ¢y @ ¢, @ ¢y, (35)
Simple scaling guarantees principal stress uncoupling. All classical stresses are simple stresses.
3.5. Metric stress
A look at the classical stresses, while keeping in mind the bounding roles of the Kirchhoff and Rivlin

stresses, further suggests to select the constant coefficients S} =0, So+S_; =1, (0 < S, S_; < 1), hence
to define S as a convex combination of Z and C™'ZC~'.
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A metric material stress S,(=Z) is defined as the partial inverse of a smooth monotone isotropic simple
function of the reference stress S and the metric C, which is linear in S and a linear combination of the three
successive powers C, I and C~! and which coincides with the reference stress in the original form,

2+n 2—n
S(S,,C) =——-S,+
24n

1S, C7', S(S,,I) =S, (—2<n<?2) (36)

2 _ _
Vs,S(S,,C) = 181+ T"c-l TC!, Vs S(S, 1) =1 (37)

Injecting the spectral decomposition (6) of C into (36) gives its spectral form

2 2—
$(8,,C) = =S, + 7 le, @ S e, @) (38)
4’))11 Vb
The metric stresses (36) form a one-parameter family called the metric family. It includes an infinity of

members because n is real.

Index n Metric stress S(S,,, C) Qualifier (U-degree)

2 S(S,,C) =S(S,) =S, Quadratic

1 S(S;,C) = %(351 + C’181C’1) Quasilinear

0 S(So, C) = (So +C'spC™ Quasilogarithmic
-1 S(S-1,C) =1(S1 +3C7's_ ) Quasihyperbolic
-2 S(S_», C) c's_,c! Quadhyperbolic

The classical Kirchhoff and Rivlin stresses are recovered for the two extreme values n = +2, the quasi-
logarithmic stress for the middle value n =0 (Pietrzak, 1997, Pietrzak and Curnier, 1999) and two new
stresses are uncovered for n = +1.

The metric stress family is an approximation of the stretch stress family. In particular, the new interme-
diate stresses S| are simple approximations of the corresponding Biot (—Ziegler) linear and Hill hyperbolic
ones S, hence their names

S (SvUz) ~ Sl (SvU)v Sfl(stz) ~ S—l(sa U)

3.6. Conjugacy definition

A weakness of the static definition of metric stresses is its failure to reveal a deep correspondence with its
homonymous strain. This correspondence, called duality or conjugacy, arises from the additional, rational,
requirement that all strain—stress pairs must develop the same internal power (on any part w C Q of the
solid), in order to be energetically equivalent. Since the internal power implied in deforming a solid must
in turn be equal to the external power supplied to it, the above requirement, written in the preferred
nominal-material description, takes the form

/Z:GdV:/P:FdV:/ p-yd4d Vo CQ (39)
w 0] dw

where P : F = tr(P"F) denotes the stress—strain duality product which reduces to Z : G = tr(ZG) for mate-
rial symmetric tensors. Assuming continuity of the internal power densities with respect to the original
position x, a generalized strain—stress pair G-Z is said to be conjugate if and only if

Z:G=P:F (G"=G,2"=12) (40)
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In particular, it is known (cf. Truesdell and Toupin, 1960; Truesdell and Noll, 1965; Eringen, 1975), that the
quadratic Green strain and Kirchhoff stress pair E-S is conjugate. Therefore the material pair C/2-S can be
beneficially used for reference in the definition (40) instead of the nominal pair F—P. Finally, if the a pos-
teriori principle (40) of invariance of the internal power in a change of strain—stress pair is turned into an a
priori postulate, then it can be used for defining stresses once strains are given.

3.7. Conjugate generalized stress

A material, symmetric generalized stress Z. conjugate to a given material, symmetric generalized strain G
is implicitly defined by requiring that the internal power (per unit material volume) it develops at the strain
rate G must be equal to the reference power developed by the material stress S at the material strain rate
E=C/2

Z:G=S:C/2 (Z"=12) (41)
Unlike the static notion of generalized stress (27) which is free of any strain connotation, the energetic con-
cept of conjugate generalized stress (41) is linked to a definite strain. This link can be found by substituting
the generalized strain rate (21) in the internal power (41) which, with the help of the transposition of a
fourth order tensor AT| X : AY = ATX : Y, yields

Z:G=27Z:VcG(C)C=V.G(O)Z:C=(S/2): C

Identifying the duals of C (since it is arbitrary), a generalized stress Z. conjugate to a generalized strain G is
alternately defined in terms of the material stress S and the metric C as the partial inverse of the Z-linear
formula

S(Z,C) = 2V{G(C)Z (42)
VzS(Z,C) = S(C) = 2V{G(C) (43)

Since the strain gradient is positive definite, it is invertible and a generalized stress is directly defined by
Z(S,C) =1V G(C)S.

3.8. Conjugate isotropic stress

Substituting the isotropic strain gradient (5) into the conjugate stress definition (42) gives the general
expression of an isotropic stress conjugate to an isotropic strain

3G, .
F(F],Fo, F,l)tr(C’Z)C =+ 2Gk(F1, Fo, F,l)[VCCk]Z (44)

J

S(Z,C) =2

Here also, the conjugate isotropic stress (44) differs from the plain one (30) by the stress combination coef-
ficient functions being equal to twice the strain gradient (5) ones
0G;

Sy =2,
/T er,

S1=0, Sy=2G;, S.,=-2G (45)

3.9. Conjugate simple stress

For a simple strain, the strain gradient further simplifies into (10), so that a simple stress conjugate to a
simple strain is defined by

S(Z,C) =2G,(I'1,Ty,_\)Z —2G_(I'}, Ty, _,)C'ZC™" (46)
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Conjugacy requires the coefficient functions in (33) to be
S1=0, So=2G;, S 1=-2G,
3.10. Conjugate metric stress

Finally, the same approach applied to a metric strain directly gives the conjugate metric stress as

2 _ 2 — _ 2 2 —
S(S,, C) = 2[VIE, (C)]S, = I”I g1+—"c'@cls, = :nS,, +=—"cls et @)
Hence the choice of the (constant coefficient) convex combination
2 2 —
S, =0, Sy=2G, = :", S, =-2G, = 4”

in (36) is confirmed (G; and S, have shifted indexes because Gy, = —n/4 in (13) disappears in (14)).
3.11. Nominal stress

The material stress derived above is a step towards the nominal stress rather than an end. By substituting
the material stress S(S,,, C) (36) or (47) into the relationship P = FS, the nominal stress P is found in terms
of the metric stress S,, and the nominal strain F to be

2+n 2—n
FS,
4 T3

The nominal stress remains a linear function of the metric stress. It can therefore be represented by a
(fourth order) tensor which can be shown by conjugacy to be the transpose of the non-symmetric gradient
of E,, with respect to F

P(S,,,F) = P(F)Sn = [VEEn(F)]Sn

_ {2 YRS FN el S YU RS (F“F‘T)]}Sn (49)

P(S,,F) = FS(S,,F'F) = F'S,F'F "' (48)

8

To close this section, it is pointed out that the use of a conjugate strain—stress pair is by no means compul-
sory for formulating material laws. It is only preferable for energetic balance purposes.

4. Metric elasticity

The metric strain—stress family opens the way for formulating gradual families of nominal laws at large
transformations. This capability will now be demonstrated in elasticity.

4.1. Linear metric law

To this end, consider a hyperelastic linear metric law S, which derives from a quadratic elastic metric
energy density V, and possesses a constant gradient called the metric stiffness elasticity tensor S,,

v, (E,) = %E . S,E,, V,(0) =0 (50)
S,(E)) = Ve Vo(E,) = S,E,,  S,(0) =0 (51)

S, =Vg,S, = Vg V., S, =0 (52)
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The energy V), and the stress S, are assumed to vanish in the original-natural form €, without loss of gen-
erality and for simplicity, respectively. The stiffness tensor S, possesses the minor symmetries resulting from
those of E, and S, and the major symmetry due to the existence of V,,.

For stability reasons in small and pure symmetric strain situations, it is assumed that the metric energy
function V, is strictly convex, or, equivalently, the stress law S, strictly monotone, or, sufficiently, the stiff-
ness tensor S, positive definite over ¥ym = {E,, ET E,},ie. VE, E, € $ymE, #E,

VaoE, + (1 — 0)E,] < aV,(E,) + (1 — )V, (E,), 0<a<]l (53)
[Sn(ﬁn) - Sn(En)] : (En - En) >0 (54)
(E,—E,): S,(E,—E,) >0 (55)

Remark. Although the nominal energy density W (as a function of the transformation gradient F, to be
defined in (59)) cannot be assumed to be convex over Z%in = {F,detF > 0} (for formulation objectivity
and solution multiplicity reasons to be discussed later), there is no objection to requiring the metric energy
density ¥V, to be convex over ¥ ym.

Due to strict convexity, the inverse stress-strain linear law E, = S ' exists and derives from a quadratic
elastic complementary energy density ¥, and possesses a constant gradlent called the compliance elasticity
tensor E, = S

1
V,(Sy) =58, : ESy, V,(0)=0 (56)
E,.(S,) = Vs Vi(S,) =ES, E,(0)=0 (57)
E.=S,'=Vs,E,=Vg Vi, [E, =0 (58)

The complementary energy V) and the strain E, are equal to zero at the stress origin. The compliance
E,=S, " has the same symmetries as S,. Moreover, V> is strictly convex, S, strictly monotone, and E, po-
sitive definite. The direct law (50)—(52) and its inverse (56)—(58) are objective since E; =E, and S; =S,,ina
change of reference frame.

4.2. Nonlinear nominal law

The nonlinear elastic nominal law is obtained by substituting the definition of the metric strain E (F)—
(19) in the linear metric law S, (E,)—(51) and then the result into the nominal stress P(S,,F)—(48).

W(F,n) = V(F'F,n) = V,[E,(F'F)], W(ILn)=0 (59)
P(F,n) = VgW(F,n) = FS(F'F,n), P(I,n) =0
_ 2 s B, (FTF)] + ?F—Ts” [E,(FTF)]F'F T (60)

P(F,n) = VgP(F,n), P(Ln) =S,
=1 S(F'F,n) + [FRISEF,nFo1"
2 2— 2
_ :nF®I+TnFT®(F1FT):| Sn[ +n
2+” 2-n 1 — pipTq el
188 ——— F'&®F'F'S,F
+FSFHQEFE'FH)+FTS,F'FHTF'] (61)
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where —2 < n < 2 and the abbreviation S,, = S,[E,(F'F)] is used for conciseness. In (48) and (60), the same
letter P is abusively used for denoting a component and a composite stress functions with equal values
P(S,,F) = P(F,n).
Again, the classical StVenant—Kirchhoff law is recovered for n = 2; the quasilogarithmic law (n = 0) was
suggested in Curnier and Rakotomanana (1984), Curnier and Rakotomanana (1991) and proved opera-
tional in Pietrzak (1997) and Pietrzak and Curnier, 1999. The quasilinear law is new.
It can be checked that the nominal-metric law is objective in the nominal sense that VF(detF > 0),
VR=R",
W (RF,n) = W(F,n)
P(RF,n) = RP(F,n) (62)
P(RF,n) = R @ P(F,n)Ra 1"

A nominal law is isotropic when in addition
W(FR",n) = W(F,n)
P(FR",n) = P(F,n)R" (63)
P(FR",n) = 1@ RIP(F,n)[1 © R]"

As specified, the nominal law (59)—(61) is consistent about the original-natural form Q (where F =1). Note
that P(I, ) is singular; its rank is 6 instead of 9 (the default being due to rotational freedom). If the elastic
solid undergoes a rotation from its original form €, then objectivity (62) implies in particular that the nom-
inal energy and stress remain equal to zero whereas the stiffness becomes equal to the rotated original mate-
rial stiffness, i.e. VR=R™T,

WR,n)=WwW({n) =0

P(R,n) =RP(I,n) =0 (64)

P(R,n) =R IPLn)RI

As a consequence, W cannot be strictly convex, P strictly monotone and P strictly positive (to see that,
apply the definitions (53)—(55) to them between I and R to run into contradictions). At best, they can only
be so over the subspace &ym, of irrotational symmetric positive definite transformations.

4.3. Nonlinear isotropic spectral energy

In the isotropic case (indicated by a = sign), the elastic energy density can be expressed as a symmetric
(i.e. invariant under pairwise and cyclic permutations) function @ of the singular values v, = ,/y, of F = RU
(which are the eigenvalues of U = v/C), called the spectral energy density; moreover, the first partial deriv-
atives @, of @ with respect to v, are the principal stresses m, along the principal directions of C of the (Biot-)
Ziegler symmetric /inear stress tensor (Truesdell and Noll, 1965)

W(F,n) = ®(vy, 3,03 1) (65)
Tr o Rl
§1 =R P:naca®ca, na(01702703;n) 25(01702703;’1) (66)

For the isotropic metric law deriving from the elastic energy defined by

W(F,n) = %trz [E,(F'F)] + utr[EX(F'F)] (67)
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the spectral energy density @, the principal stresses @, = ®, and the (symmetric) spectral stiffness
Tap = P ap = P, are equal to

@ (v.;n) = P(vy, 2,035 1)

= [0) + en(0D) + e, 0] + e 0T) + €203) + €03 (68)

P
Tca<vc;n) = ¢,a(uc‘;n) = 5(01702; 03;’1)

K3
Ov,0vy,
= (A + 2uda)dv,e, (V2 vpel, (v7)

+ {Aea(v]) + en(v2) + € (V3)] + 2p1e,(v7) }2€, (V) + 4vse; (v;)] 00 (70)

TEaAb(Uc; n) = (p,ab(vc; I’l) = (Ula U2, U3 I’l)

where e, is the metric scale defined in (17) and e, = de,/dv?(# de,/dv) its derivative with respect to y = v?
derived in (18), respectively equal to

24n, n 2-n , ,

2 2 —
e,(v?) = v, _ctn My

en<l)2) - 8 + 8

8§ " "4 3

The consistency conditions at the origin take the form
o(1,1,5;n) =0, @,1,1,1;n) =0, &,(1,1,1;n) =24+ 2udu

Note that the Hessian matrix at the origin coincides with the usual spectral stiffness of linear elasticity (as it
must)

A2 2 P
@1, 1, n)=| 4  A+2u A
A L a+2u

The spectral form @ is useful for assessing the convexity properties of W, as discussed in the next para-
graph, because the v, are homogeneous (of degree-1) functions of U and F. The following finite quotients
0d,;, and Ad,;, will also be useful for this matter

¢,a - ¢b

5(pab(vc;n) = ﬁ(vh U2, 03;’1)
a— Ub

F2Y '
=1 [e,,(v%) + e,,(v%) 4 en(vg)p vae, (v;) — vpe, (v;)

Uy, — Up
vae, (12)e. (b2) — vye, (Ve (02
_|_4# € ( a)en( a) b€ ( b)en( b) (71)
U, — Up
0, D, — 0, @
A(pab(vc;n) = 1;70},’}7(01; U2, U3;n)
a — Yb

ve,(vz) — vie, (v3)

2, (12)e (12) — 12e (02)e! (12
= 7[en(v?) + en(v2) + €, (12)] 275 vaen(v3)e, (Vg) — vien(vy)e, (V)

a n

(72)

+4u

Vg — Up Uy — Uy
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5. Metric convexity

In this section, the monotonicity of the isotropic nominal metric law is examined in order to delimit
its range of applicability, meaning the range of strains over which existence of a solution can be ensured
(for different values of n and of the relevant elastic constant v). Appropriate background for this
topic can be found in the books on mathematical elasticity or inelasticity by Truesdell and Noll (1965),
Marsden and Hughes (1983), Ciarlet (1988), Silhavy (1997) and on the calculus of variations by Dacorogna
(1988).

5.1. Question of existence of a solution

The problem of metric nonlinear elasticity consists in solving the equilibrium equation DivP =g
(where g is a volume force density) together with the nominal law (60), subjected to suitable boundary
conditions. General conditions for the existence of a solution to this problem are difficult to establish.
Note that uniqueness is not the rule in large transformations, as illustrated by buckling phenomena,
for instance. A powerful approach for addressing the existence issue is the direct method of the cal-
culus of variations, which consists in showing the existence of a minimizer of the total energy of the
loaded elastic solid, based on the nominal elastic energy density W:F - W(F), under appropriate
relaxed convexity conditions, cf. e.g. (Dacorogna, 1988). An optimal necessary and sufficient condition
(NSC) for existence of a solution is the quasiconvexity of the total energy involving [,WdV, discov-
ered by Morrey (1952). Unfortunately, quasiconvexity is very difficult to interpret and verify, because
it is a global requirement over Q. A simpler necessary condition for existence is the ellipticity or rank-
one convexity of W (monotonicity of P, positivity of [P), initiated by Legendre and confirmed by
Hadamard, cf. e.g. (Truesdell and Noll, 1965; Ball, 1977a,b; Dacorogna, 1988); obtained by restricting
trial transformation gradients in the definition of rank-three convexity to pairs differing by a rank-1
modification

VF,F =F+f®gc Lin rank-one (73)
W[eF + (1 — 2)F] < oW (F) + (1 — o) W(F)(0 < o < 1)  convexity (74)
[P(F) —P(F)]: (F—F) >0 monotonicity (75)
(F—F): P(F)(F—F) >0 positivity (76)

Rank-one convexity can be interpreted as a directional convexity, especially when starting from F=1L
Note that det F = det F(1 4+ g - F~'f) > 0 requires g-F~'f > —1 for orientation consistency. Note also that,

due to objectivity, (73) can be reduced to VF = U, F=U+h® g, but ﬁT =+ F in general.

5.2. Characterisation of rank-one convexity for an isotropic material

When the material is isotropic, the elastic energy can be written in spectral form as a symmetric function
@ of the principal stretches as in (65)

W(F) = W(RFR")=d(v;, 05, 03) = ®(v) = P[v(F)]

¢(DI7UZ7D3) = ¢(02)D3701) = ¢(U3) U1, UZ) = ¢(023 U1, 03)
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The nominal isotropic energy W is rank-1 convex if and only if the spectral energy gradient V,® = (&)
satisfies the Baker—Ericksen inequalities and its modified Hessians (Hadeler, 1983; Simpson and Spector,
1983; Dacorogna, 1988; Rosakis and Simpson, 1995; Silhavy, 1999; Dacorogna, 2001),

D, P, P, D, P, P,
Vio, ., =| — &y Oy | and Vio, =| — &pn &,
Sym — @_]33 Sym — @_]33

P—P>
vl —02

Lo - _ P1+Ps
where @112 =0p+ and ¢A’12 = —dj’]z + v1+0y

1999) for the original definition), which hold if and only if the spectral derivatives or finite quotients satisfy
the inequalities

are copositive (cf. (Simpson and Spector, 1983; Silhavy,

D, —0,®
@, =20, Ad), Ew =0 (v #v) (77)

U — 2

pmP, = /P11 P+ P, = 0(v; #v2), pmdP, = /PPy + P, =0

either

5CtVf€p+++ = v/ ¢,11¢,22¢433 + Q,ll(p33 + 45,22@31 + ¢A33¢j2 >0
5€tV§(p+__ =/ QD,II(D,ZZ(DS} + ¢,11(p53 + 45,22@31 + @33(15712 = 0

or
detVid, = &1, D3 + 205,05 P}, — 1 PY; — P dl — D 33di; > 0
detVid, = @D @35+ 208,05, — @ P — Py P3i — P33 ® 5 = 0

At the start, there are four modified Hessians V§<I>+++, Vf(DJr,,, Vf<1§,+, and V§¢,,+ which should be
copositive in (77), but due to the permutation and cyclic symmetries, the last two are equivalent to the sec-
ond one. The condition A®;, > 0 is equivalent to the Baker—Ericksen (B-E) inequalities (Truesdell and
Noll, 1965).

Remark. The inequalities (77) are better understood after applying them to the linear isotropic Cauchy—
Biot law S{(E;) = A(trE;)I + 2uE;, between the linear strain E; = U — I and the conjugate rotated stress
S; = R"P. It can be shown that, under the usual provisions on the elastic constants, this archetype objective
linear law is not rank-one convex, as discovered by (Ball, 1984).

5.3. Rank-one convexity domains of the metric law

Given the explicit expression (68) of &(vy,v,,v3;n,V), rank-one convexity was tested numerically with the
commercial code Mathematica. The results for plane, axisymmetric and three-dimensional strains are sum-
marized in Figs. 2 and 3. It is checked that the extreme laws n = £2 lead to violation of all convexity con-
ditions in tension (n = —2) and in hydrostatic pressure (n = 2). The importance of Poisson’s ratio effect on
the extent of the convexity regions is illustrated in Fig. 3. The intermediate laws n» = 0,1 demonstrate an
extended area of rank-one convexity around the original state of strain. However, the situation deteriorates
when v — 1/2. Clearly, the classical experiments (dotted lines) are not sufficient for ensuring the overall
rank-one convexity condition necessary for existence of a solution to all three-dimensional boundary value
problems. Finally, it should be emphasized that the quasilogarithmic and quasilinear laws (n = 0, 1) are sta-
ble over substantially larger domains around the original state of strain than the quadratic and quadhyper-
bolic ones (n = 12).
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RIC| n=-2, v=0,33

, n=1, v=0.33

R1Q, n=2, v=0.33
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Rl(‘.‘,‘.l n4-1, v=0.33

v =VZ U

RIC, n§0, v=0.33
1

i
R1C, n$2, v=0.33

o 0.5 1 1.5 2 2.5 3

ve=yZing

Fig. 2. Regions of the stretch eigenvalue space where rank-one convexity is violated (in grey) in plane strain (left column), axisymmetric
strain (center column) and triaxial strain (right column) for n = —2,—1,0, 1,2 (rows) and v = 1/3. In the 2D plots, the dotted lines are the
deformation paths of elongation and pure glide in plain strain (left column) and dilatation, elongation and traction in axisymmetric
strain (center column). In the 3D plots (right column), the surfaces correspond to the boundaries between the white and grey regions.
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Fig. 3. Regions where the linear metric laws violate (in grey) rank-one convexity in plane strain for n =—-2,—1,0,1,2 (rows) and
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n=-1, v=-0.25

n=0, v=-0.25

, n=0, v=0.25

v=—-0.25,0,0.25,0.5 (columns). The dotted lines are the paths of elongation and pure glide.

R1d, n=-2, v=0.5
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6. Homogeneous strain—stress illustrations

The family of isotropic elastic metric strain—stress laws will now be illustrated by means of classical
homogeneous stress—strain states, many of which correspond to standard rheological experiments on iso-
tropic materials, namely:

e dilatation, i.e. spherical tension—dilatation (or pressure-concentration), as in a ball under pressure,
o simple elongation, i.e. tritraction—unielongation (or contraction-shortening),

e simple traction, i.e. unitraction—trielongation (or contraction-shortening), as in a rod under traction,
o pure glide, i.e. tritraction—reciprocal-bielongation,

e pure shear, i.e. opposite-bitraction—trielongation, as in a thin tube in torsion.

All five are symmetric tension-stretch states defined as follows.

6.1. Pure tension-stretch

A pure stretch homogeneous symmetric deformation F = U = UT(R =1) in its spectral form is

F=v,,®c¢c, O0<v,<00, €-¢=04, ab=173 (78)
The corresponding coaxial pure nominal tension P =8, = S| is
P(n) = n,(v.;n)e, ® ¢, (79)
Ta(ves ) = {2lea(v?) + €n(03) + e (02)] + 2p1e,(v2) } 20,6, (02)
2 3n 2-—
= {i[%( R0l - - +022+032)}

24+n n 2-—n 24+n 2—n
b > -2 LY -3
+“{8”@4 SU””<4U+4U”)

since once again e,(v?) = 2202 — 2 — 221972 and ¢ (1) = 22 4 22874
The matrices of F = U and P =S, in the principal basis ¢, are

vy 0 O 71 (v n) 0 0
Fl=10 v, 0], [P(n)]= 0 72 (v.; ) 0
0 0 U3 0 0 7'E3(l)g;l’l>

6.2. Dilatation

A spherical dilatation (or concentration) is characterized by a radial stretch vy =v, =v3 =0

F=vl, 0<v<o0 (80)
The nominal stress is a spherical tension (or pressure) characterized by a radial component 7y =, =73 =7n
P(n) = n(v;n)l;  w(v;n) = 32+ 2p)e, (v?)2ve,(v*) = 3xcf, (v) (81)

where f, is the metric nominal elongation scale function (measuring the radial stretch) defined by
fu(v) = 2ve, (VP)e,(v*), f,(1)=0

2 2
(e 2 L )

2\ 4 4 4 2\ "4
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The matrices of F and P in any orthonormal basis are

v 0 0 w(v; n) 0 0
[Fl=10 v 0, [Pn)]= 0 n(v;n) 0
0 0 v 0 0 n(v;n)

Therefore, the nominal scale £, defined in (82) governs the tension—dilatation response. This calls for its
analysis. The first and second derivatives of f,, with respect to v are

iy 3 (2+nm Lo on24n n2—-n , 5(2-n\" oy

PR ey : n2—n _s 2—n 277 o
fn(v)—3< A )u—lZZ 70 —15( A )1) . )y =3m-1)

It can be shown that the nominal scale function f,, is monotone (i.e. that f(v) > 0 Vv € £.) for all n within
the range —1.703 < n < 1.979. For n = 1, the inflexion point is at the unit stretch since f{'(1) = 0. It is inter-
esting to locate the stretches v/, = f/-1(0) and v” = f”~'(0) where the nominal scale f,, and hence the stress—
strain law 7(v;n), reaches a minimum (z# > 1.979) or a maximum (n < —1.703) and where it has its (unique)
inflexion point, respectively. For the most representative values of n, they are

n 2 1.979 1 0 -1 ~1.703 -2
Uy Y3~ 0.58 0.472 - - - 1.602 S~ 129
v 0 0.472 1 V5~ 1.22 1.45 1.602 Sa 158

Taking 3x = 1 for simplicity, the graphs of the nominal metric laws 7(v;n) = f,(v) are plotted in Fig. 4 for
the integer and critical values of n.

6.3. Pressure—volume supplement

In tension—dilatation, common sense suggests that the spatial pressure t (i.e. the principal value of the
spatial stress T, negative in compression and positive in tension) should be a monotone function of the vol-
ume change J = detF = v’

T;JHT(J)$>0 (VJ € R.) (84)

This condition is mechanically reasonable because it requires the state law of a perfect elastic fluid, for
which the energy W depends on F through its determinant J alone, to be in agreement with basic experi-
ments. It is also mathematically reasonable because it can be shown that the energy W is polyconvex with
respect to J if and only if % = “f,—‘f = ‘i}z" > 0 (Leblond, 1992).

In view of the relationship between the (Cauchy) spatial stress T and the nominal stress P (or the rotated
stress S;) T = J'PFT = J7'RS,UR", the spatial pressure 7 is related to the nominal one n by T = v 2 It
follows that the spatial pressure-volume metric law is

i) = 3, 0) = A - 27,0 (55)
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fn
2

-2

Fig. 4. Graphs f'=/f,(v) of the nominal scale function f, (and hereby of the nominal radial tension—dilatation and axial traction—
elongation laws, e.g. m = n(v;n)) for n = —2,-1.703,—1,0,1,1.979,2 (and relevant values of ¢ and v).

Since J > 0, the spatial pressure-volume law is monotone if and only if the nominal scale function
satisfies

f.)=ofl(v) =2f,(0) >0, 0<v<o0

1 2—i-n23 n2+n n2—n _ 2—11275

On this ground, it can be shown that the spatial pressure—volume metric laws are monotone for:
—0.970 <n < 2, which is another feature.

Taking k =1, the graphs t = t(J;n) of the spatial pressure-volume laws are plotted in Fig. 5 for the
integer and critical values of n.

6.4. Simple elongation

Consider now a confined uniaxial simple elongation (or shortening) characterized by vy =v; v, =v3 =1
F=i ¢ +0@0+6®c, 0<v<oco (86)
The nominal stress is an oval triaxial zraction (or contraction) characterized by n; =n; 1, =n3 =1,
P(n) = n(v;n)e; @ ¢ + 7, (v;n)[cr ® €3 + €3 ® €3]
n(v;n) = (4 + 2u)e,(v*)2ve,(v*) = mgﬂ(v) (87)
. (v;n) = Je,(v?)
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Tn
1

-2

Fig. 5. Graphs © = ©(J;n) of the spatial pressure-volume response 7 defined in (85) for n = —2,—-0.970,—1,0,1,2 (and x = 1).

where f,, is the same nominal metric scale function as in tension—dilatation, defined in (82), but measuring
the axial stretch (instead of the radial one) this time. Therefore, the nominal metric laws are exactly the
same in simple elongation and dilatation, except for the bulk modulus 3x = 31 + 2u being replaced by
the simple elongation one &* = m =+ 2u.

The matrices of F and P in the orthonormal spectral basis are

v 0 0 n(v;n) 0 0
Fl=|0 1 0|, Pwl=| 0 m@mn 0
0 0 1 0 0 7, (v;n)

The graphs of the nominal metric traction—elongation laws n(v;n) = f,,(v) are of course the same as in Fig. 4,
provided &* = 1.
Simple elongation is instructive but hard to realize. Simple traction is easier.

6.5. Simple traction

Consider next an oval triaxial elongation (or shortening) characterized by vy =v; v, =v3 =10,
F=v;®¢c+vj0n+ec], 0<vn <o (88)

and such that the nominal stress is a uniaxial simple traction (or contraction) characterized by n; = 7;
m=n3=mn, =0
P(n ) n(v,v.5n)e; @ ¢
n(v,vi5n) = [(A+2u)e,(v*) + 24e, (v])]2ve, (v%) (89)
(v,015n) = [2(4+ p)e,(v]) + Ze,(v*)]20.€,(v7) =0
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Since 2v, €, (v?) > 0, the zero transversal stress condition implies that

A
e,(V?) = —————e,(v?) = —ve, (v
= v (v) = 1/e; [—ve,(v?)]
as expected (note that for the quasi-linear law n =1, v, (v) — 1 = —v(v — 1)).
It follows that the axial stress-stretch law reduces to
n(v;n) = %—Z#)en(vz)%e;(vz) = ¢&fu(v) (91)

where f,, is again the same nominal metric scale function as in dilatation and simple elongation, defined in
(82), measuring the axial stretch. Therefore, the nominal metric laws are also the same in simple traction as

in simple elongation and in dilatation, except for the modulus becoming the familiar Young’s modulus
1(344n)

LI . .
The matrices of F and P in the orthonormal spectral basis are

v 0 0 n(v;n) 0 0
F]=1(0 v.(v) 0 |, [P(n)]= 0 0 0
0 0 vi(v) 0 0 0

The traction—elongation graphs n = n(v;n) = f,,(v) are again the same as in Fig. 4, provided ¢ = 1 this time.

6.6. Pure glide

Consider now a pure glide, i.e. an isovolumic reciprocal plane stretch, characterized by v; = v; v, = 1/v;
U3 = 1

F=v, @+ &0 +6380¢, 0<v< oo (92)
The nominal stress is a corresponding “shear”, in fact a triaxial state of stress 7, 75, n3 defined by

P(n) = m(v;n)e; @ ¢ + m(v;n)es ® ¢ + m3(v;1n)es @ ¢;

mi(v;n) = {Ae,(v”) + e, (v7)] + 2pe, (v) }2ve, (v*) = m(v;n)

my(v;n) = {/I[e,,(u’z) + e, (v?)] + 2/16,,(072)}207162(1)72) =n(v";n)

m3(v;n) = Ae,(v?) 4 e, (v72)]

The matrices of F and P in the orthonormal spectral basis are

v 0 0 n(v;n) 0 0
[Fl=1[0 v! 0|, [P(n)]= 0 n(v='5n) 0
0 0 1 0 0 m(vin)

The nominal shear stress n can be expressed in terms of a metric nominal glide scale function g, which
depends on v besides v

n(v;n) = 2ug,(v;v), n(l;n)=0
1—v v
DN g2 2 -2 ) —
g,,(v,v) - Zl)en(l) )|:1 _ 2ve’l(v )+ 1 _ zve"(v ) bl gn(l,V) 0

1 2+n2(l—2v)+nv3 112+nv_|_nvlf1 nZ—nlf3 2—n2(l=2v)—n
S 1-2v| 4 8 4 4 4 4 4 4 8

-5

(94)
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Two remarkable properties of the metric and quasilogarithmic scales (unrevealed up to now) are the inver-
sion-opposition and division—subtraction conversion rules (inherited from the logarithm)

en(v?) = —e,(1);  e(v?) = —e(v?)
2,(0;0) = fu(v);  go(v5v) = fo(v)

Studying the sign of the derivative g’ (v;v), it can be shown that the metric law is everywhere monotone in a
pure glide only if

(95)

— 1.703min[1,1 — 2v] < n < 1.979 min|[1, 1 — 2v]

(96)
Vv e [—1,1/2] Vv e (0,00)

In particular, it is monotone for n =0 (Vv) or less useful for —1 < v < 0 (Vn,—1.703 <n < 1.979). For the
more useful range 1/10 < v < 1/2, it remains everywhere monotone only for —2(1 — 2v) < n < 2(1 — 2v).
Conversely, the 3D v-region around unity over which it remains monotone decreases as v increases, to
shrink into a narrow channel along the trissectrix v; = v, = v; when the material becomes incompressible.
A similar trend was observed by Hill with the stretch family (Hill, 1968). In short, the quasilogarithmic
stress—strain pair n =0 is preferable for (nearly) incompressible materials (rubber elasticity, metal
elastoplasticity).

The graphs g = g,(v;v) of the nominal glide scale function (and hence those T = 7(v; n) of shear—glide laws
for 2u = 1) are plotted in Fig. 6 for v =10,1/3,1/2 and the integer and critical values of n.

A pure glide is difficult to realize. A pure shear is easier to obtain.

6.7. Pure shear
Consider next a “glide”, in fact a triaxial stretch, given , vy, v,, v3 (0 <v,. < 0)

F = V1€ X €1 + V26 R €y + 03€¢3 X C3 (97)

such that the corresponding nominal stress is a pure shear, i.e. a plane stress with opposite principal stresses,
characterized by ny = —n, =m; 13 =0

2 3 }
— n=2 -0. |
—- n=1.979 [
—— n=1 | |
- n=0 ’ |
- n:_% 703 [
cees n=-1. e
N> -1. -1.5 | } n=-2
— v-1 Iy | = v
[

Fig. 6. Graphs g = g,(v) of the nominal glide scale function g, (and hereby of the shear—glide laws), for v =0,1/3,1/2 and the relevant
values of n.
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P(n) = n(v;n)e; ® ¢ — (v n)e, @ ¢,
m(ve; n) = {Afen(v7) + €a(v3) + €a(v3)] + 2ute, (v7) }201€, (v})
= —{Alea(v}) + €a(v3) + € (v3)] + 2ue, (13) } 2026, (v2)
13 (ve; 1) = {2len(v7) + € (03) + en(v3)] + 2pe, (v3)}205€, (v3) = 0 (98)

The condition of zero normal stress implies that

n(13) = = 5 lenl0D) 4 ea()] = = a0 + ea(3)
= sl =y e { - P len0) + 0]} (99)

It follows that the plane stresses are equal and opposite to

n(vy, 0a;n) = ﬁ le.(v}) + ve,(v)]2v1€, (V1)
& /
=1 [en(v3) + ve, (v7)]202¢, (v3)
= [e(v7) + ve, (v3)]201€,(v7) = — [en(v3) + veu (v7)] 2026} (v2) (100)

In principle, the opposite stresses condition (100) can be used to express v, in terms of v; = v and hereby to
find the “glide’: v;v,(v); v3[v, 12(v)], but a closed form expression is complicated.
The matrices of F and P in the orthonormal spectral basis are

v 0 0 n(v;n) 0 0
[F]=10 u(v) 0 [, [Pn)]= 0 —n(v;n) 0
0 0 v 0 0 0
6.8. Summary

Application of the metric nominal law (60) to homogeneous stress—strain states has clarified its proper-
ties. It was shown that the law is monotone in the following specific ranges of n

Homogeneous stress—strain Metric law monotony range of n for —1 < v < 1/2 and for 0 <v <o
Tension—dilatation —-1.703 <n <1979

Pressure—volume —-0970<n<?2

Traction—elongation —1.703<n<1.979

Shear—glide —1.703min[1,1-2v]<n < 1.979min[1, 1-2v]

Therefore, within the range —0.970min[l,1 — 2v]<n < 1.979min[1,1 — 2v] for all —1 < v < 1/2 and
more practically within —(1 — 2v) < n < 2(1 — 2v) for all 2/100 < v < 1/2, the metric law is much better be-
haved than the extreme laws obtained for n = 2 (the classical StVenant-Kirchhoff law) and n = —2, which
are not monotone in compression and in tension, respectively. The quasilogarithmic law # = 0 remains
monotone in pure shear—glide even for incompressible materials v = 1/2.
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7. Conclusion

Introducing the progressive definitions of generalized, isotropic and simple strains, a family of metric
strains was proposed that represents a second-order approximation of the Seth—Hill stretch family, but re-
mains easier to calculate. The corresponding metric strain rates were then expressed in terms of the nominal
strains and their rates. Using the previous definitions of strains, a family of conjugate metric stresses was
derived, firstly by a static analysis and secondly by energetic duality.

The proposed metric strain—stress pairs were then used to formulate linear elastic metric laws that gen-
erate non-linear nominal laws in large transformations. The metric and nominal versions of the strain en-
ergy density, stress and stiffness tensors were calculated. In the case of material isotropy, the corresponding
spectral energy density was also calculated.

The definition of the rank-one convexity condition of the nominal strain energy, necessary for existence
of a solution to the equilibrium equations with metric laws, was recalled. Using the hypothesis of material
isotropy, rank-one convexity was translated in conditions on the spectral energy density. The regions of the
principal stretch space where the rank-one convexity condition is satisfied were delimited numerically and
to a lower extent analytically. No metric law was found to be rank-one convex everywhere, but the quasi-
linear (n = 1) and quasilogarithmic (n = 0) laws proved to be so over substantially larger areas around the
original state than the Green—Kirchhoff (n = 2) or the Karni—Rivlin (# = —2) ones.

Finally, the monotony of the metric nominal stress—strain graphs corresponding to the classical rheolog-
ical experiments of dilatation, simple elongation, simple traction and pure glide was analyzed. The quasi-
linear option exhibited the minimal geometric nonlinearity and showed an inflexion point at the origin in
dilatation, elongation and traction. The metric laws were not monotonic in pure glide when v = 1/2, except
for the quasilogarithmic one.

To conclude, the quasilinear (z = 1) and quasilogarithmic (n = 0) strain—stress pairs can be used to ex-
tend the application of most existing small strain an-isotropic rheological laws, such as linear elasticity,
conewise linear elasticity, linear viscoelasticity, elastoplasticity, damage, ... to substantially larger strains
than the Green—Kirchhoff (or Karni-Rivlin) pairs.
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